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Abstract: From times immemorial manual palpation served as a source of information on the state of soft tissues and al-

lowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient 

art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in 

medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as com-

mercial applications, a true testament to the progress and importance of the field. 

In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI, analyze their advan-

tages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and 

imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ul-

trasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement 

method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound 

imaging, X-ray imaging, optical and acoustic signals.  

Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to 

perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultra-

sound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on 

their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of 

focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming 

common applications in clinical practice. 
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I. INTRODUCTION 

The number of papers on elasticity imaging (EI) has 
grown enormously during the last two decades. Novel tech-
nical approaches and systems continue to be proposed. Areas 
of applications of EI in medical diagnostics and treatment 
monitoring are steadily expanding. A wealth of data pub-
lished in recent years indicates that the shear elasticity 
modulus of tissue is one of the most wide ranging physical 
parameters of tissue. It is also highly sensitive to tissue struc-
tural changes accompanying physiological and pathological 
processes. It is surprising that this understanding came only 
about two decades ago. It is especially surprising because 
qualitative assessment of tissue elasticity by manual palpa-
tion has been widely used since ancient times and is still in 
use today. In characterizing non-biological materials, elastic  
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moduli are considered to be among the most fundamental 
parameters. It is impossible to imagine an engineer designing 
a machine, or any other structure, without a quantitative as-
sessment of the mechanical characteristics of the compo-
nents and materials used. Meanwhile, until the 1990s, hardly 
any biomedical engineer would have been able to answer the 
simple question: is the Young’s modulus of muscle (or liver, 
kidney and any other soft tissue) on the order of (a) 1 kPa, 
(b) 10 kPa, or (c) 100 kPa?  

II. HISTORICAL ROOTS 

A. Ultrasonic Elasticity Imaging  

Until the late 1980s, biomechanics of soft tissues was not 

a part of any branch of acoustics. In a comprehensive book 

on biomechanics [1], Fung wrote 415 pages, but the propa-

gation of acoustic waves was mentioned on only two pages 

that are related to the pulse waves in blood vessels governed 

by the Moens-Korteweg equation. In physics, acoustics and 

mechanics always go hand in hand because acoustics is actu-
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ally a branch of mechanics. However, acoustics started to 
appear in biomechanical studies only in the last two decades.  

John Ferry did pioneering studies on the relationship be-
tween viscoelastic properties and the macromolecular struc-
ture of polymers such as rubbers and a naturally occurring 
biological polymer of interest to the medical science. But, 
his classic book “Viscoelastic Properties of Polymers” first 
published in 1961 [2] did not discuss acoustic wave propaga-
tion parameters and their relation with mechanical properties 
of macromolecular systems.  

Practically all literature on acoustic properties of soft tis-
sue published prior to the 1990s was related to bulk com-
pressional waves and had few links to biomechanics. The 
first publications on propagation of shear waves and surface 
waves (which like shear waves are predominantly dependent 
on shear viscoelastic properties) in soft tissues, started to 
appear after the 1950s [3-23], However, these publications 
did not get much feedback from the scientific community. It 
was hard to accept the fact that mechanical waves in soft 
tissues can propagate with speed 100 times slower than the 
speed of sound in air.  

Most of the early work on the use of acoustic methods for 
assessment of elastic properties of soft tissues was related to 
studies of skin. The reasons for that were twofold. First, the 
main function of the skin is mechanical and a close relation-
ship between the state of the skin and its viscoelastic proper-
ties is quite apparent. Many dermatologic diseases are mani-
fested in the changes of the skin mechanical properties. Sec-
ond, skin is the most accessible soft tissue so the possibility 
of assessing its mechanical properties using acoustic means, 
such as surface acoustic waves is apparent. Numerous publi-
cations addressed the issue of use of surface waves in as-
sessment of skin [10-21]. However, there has been limited 
research in the area of using surface waves for assessment 
other types of tissues such as human lung [22, 23].  

Some of the first studies, most closely related to the cur-
rent understanding of what elasticity imaging is, were con-
ducted at the Royal Marsden Hospital, UK, by Kit Hill and 
his students in the late 1970s and in 1980s. Previous experi-
ence of Hill in the radar application to moving target indica-
tion gained in the 1950s during his service in the Army and 
in the Canadian General Electric Company led him to an 
idea to extract tissue movement information from the ultra-
sound echoes. In about 1976, Hill gave a graduate student - 
Rob Dickinson - the task of trying to develop an ultrasonic 
method of analyzing tissue motion. Tissue movement was 
characterized by determining the time rate of decorrelation 
between successive, collinear A-scans taken through the tis-
sue volume of interest. Results of this work were published 
in several papers [24-26].  

In the book “Physical Principles of Medical Ultrasonics” 
published in 1986 [27], Hill had written a chapter entitled 
“Telehistology”, where he briefly introduced some of the 
ideas which are currently among those forming the basis of 
Elasticity Imaging. He defined “telehistology” as “the de-
scription of a defined region of a target tissue or organ in 
terms of ‘features’…that can be quantified by remote means 
– in this case ultrasound.” One of such feature mentioned by 
Hill was the tissue motion. Remarkably, Hill accurately de-

fined all principal techniques used in current modes of elas-
ticity imaging for inducing the strain necessary for elasticity 
assessment. He had written: “Tissue movements can be con-
sidered to be of four kinds: primary (e.g. cardiac or fetal 
limb movement), secondary (e.g. movement of liver tissue in 
response to pulsation of a neighboring major blood vessel), 
fluid flow (particularly blood flow), and externally induced 
movement.” Then he continued: “The interest in characteriz-
ing secondary and externally induced movement is that it 
may yield information features of the bulk mechanical prop-
erties tissues (e.g. bulk, and possibly shear, elastic moduli): 
features which already have a long-established value in the 
clinical technique of manual palpation.” Further he intro-
duced the term ‘remote palpation’ which he defined as detec-
tion of “response of tissues to externally induced move-
ment.” Ultrasonic studies of tissue movement were further 
continued in the Hill’s group by Maria Tristam and Jeff 
Bamber who showed that the time rate of decorrelation be-
tween successive A-mode scans may be a useful discrimina-
tor between hard and soft tissues subjected to either secon-
dary or externally induced movement [28, 29]. Tristam and 
coworkers moved Hill’s ideas to more practical implementa-
tion. They were able to discriminate normal liver paren-
chyma from hepatic metastasis using a multi-dimensional 
evaluation of Fourier coefficients associated with the cross 
correlation [29].  

In a letter sent recently by Kit Hill to one of the authors 
of this paper (A.S.) he had written: “It is gratifying to find 
that some of these ideas eventually turn out to be worth-
while.” 

A major surge in development of ultrasonic methods and 
devices for elasticity imaging started in the late 1980s and 
early 1990s [30-37]. Practically every aspect of current ultra-
sonic elasticity imaging has roots originating in the studies 
initiated in that period. The means employed in the early 
elasticity imaging systems for generating stress in the tissue 
included static loading and external vibrators. Beginning in 
the late 1990s several laboratories developed an alternative 
approach for remote probing tissue elasticity using acoustic 
radiation force [38-44]. Acoustic radiation force is the time-
average force exerted on an object by an acoustic wave. Ra-
diation force is produced by a change in the ultrasonic wave 
energy density of an incident acoustic field.  

Notably, the fraction of the radiation force related modes 
of ultrasound elasticity imaging is constantly increasing. 
Numerous elasticity imaging modalities based on the use of 
acoustic radiation has been developed and tested in various 
clinical applications. Analytical equations describing the 
spatial and temporal behavior of the radiation force induced 
shear displacement and waves in tissue-like media have been 
derived [38, 45, 46]. 

B. Magnetic Resonance Elastography (MRE)  

The first MR elasticity experiments, described in detail in 
[47], were conducted at the University of California at San 
Diego in 1989 and at the University of Michigan, Ann Ar-
bor, in 1992. Experiments in San Diego were performed by 
R. Buxton and A. Sarvazyan on a phantom mimicking soft 
tissue with inclusions. The phantom was a disposable ultra-
sound standoff gel pad in which three liquid-filled capsules 
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(common Vitamin E capsules) had been inserted randomly in 
the pad through small incisions. This phantom was placed in 
a non-ferrous clamp which allowed planar deformation of 
the phantom normal to its longitudinal central axis while it 
was inside a standard bird-cage coil designed for head imag-
ing. The whole assembly was then placed into the bore of a 
1.5T whole body imaging MRI system (General Electric, 
Milwaukee) and was imaged with a standard spin echo se-
quence at different levels of compression. Mathematical 
analysis of MRI data on deformation of the inclusions 
showed that the liquid-filled capsules with their complex 
structure provide local deformation effects similar to homo-
geneous inclusions having Young's moduli values two times 
smaller than the Young’s modulus of the surrounding mate-
rial.  

MRE studies, dated from 1992 conducted at the Univer-
sity of Michigan, Ann Arbor, used similar static loading of 
tissue mimicking phantoms [47, 48]. MRE using dynamic 
loading from the surface of the tissue has been pioneered by 
researchers at the Mayo Clinic, Rochester, MN, and by sev-
eral other laboratories starting in 1995 [49-51]. 

 The first demonstration of the use of MRI to record 
shear wave propagation was made in the collaborative study 
of the University of Michigan and Artann Laboratories [38] 
conducted in 1995-1996. In that study, an ultrasound trans-
ducer was mounted to rubber phantoms which were either 
homogeneous or contained two cylindrical inclusions. Re-
mote displacement of 20 microns was achieved by a single 
555 kHz ultrasound pulse with a duration of 1.5ms. The dis-
placement was measured by phase sensitive MRI using a 
pair of opposite polarity gradient pulses. Figure 1 shows the 
time evolution of the shear wave induced by the radiation 
force of focused ultrasound pulse. The top set of images is 
from the homogeneous phantom and the bottom set from the 
phantom with the two hard inclusions. Propagation of the 
shear wave in the homogeneous phantom is cylindrically 
symmetric, radiating outward from the initial displacement. 
Propagation in the phantom with the two inclusions starts the 
same as the in the homogeneous phantom, but when the 
shear wave reaches the inclusions in the phantom, it passes 
through much faster due to the difference in elastic modulus 
in the two media.  

C. Mechanical Imaging (MI) 

Mechanical Imaging (MI) most closely mimics manual 
palpation and therefore is also called ‘tactile imaging’. In 
contrast to other elasticity imaging techniques, which are 
based on estimating static or dynamic strain in the tissue, i.e. 

are “strain imaging”, MI uses estimates of the surface stress 
pattern to reconstruct tissue mechanical structure and there-
fore is “stress imaging”. Early attempts to visualize the 
‘sense of touch’ date back to the 1970s and 1980s [52-54].  

One of the first published elastographic images has been 
obtained by tactile imaging. Figure 2 shows an elasticity 
image of a breast phantom with two simulated lumps pub-
lished by C.R. Gentle in 1988 in the paper entitled “Mam-
mobarography: a possible method of mass breast screening” 
[54]. The image was obtained using an optical technique 
employing frustrated total internal reflection to convert a 
pressure distribution into a brightness distribution over the 
region of contact with the tested object. Extensive studies on 
imaging tissue mechanical structure using a pressure sensor 
array to measure stress patterns on the surface of compressed 
tissue were conducted in the 1990s at Harvard University in 
applications related to robotics and documentation of breast 
masses [55-60]. Similar studies were conducted at Artann 
Laboratories in applications related to prostate and breast 
cancer detection [61-68].  

 

Fig. (2). One of the first elastographic images published in 1988: a 
stress pattern recorded on the surface of compressed breast phantom 
(rubber prosthesis filled with silicone rubber gel) containing two 
lumps (nylon balls of diameters 25 mm and 6 mm). Reproduced 
with permission from [54]. 

III. BIOPHYSICAL BASIS OF ELASTICITY IMAG-
ING: RELATIONSHIP BETWEEN MECHANICAL 

PROPERTIES AND STRUCTURE AND COMPOSI-

TION OF SOFT TISSUE. 

To fully characterize tissue as a mechanical system a 
great number of parameters are needed including the shear 

 

Fig. (1). Propagation of shear wave induced by the radiation force impulse in homogeneous phantom (top row) and phantom with two inclu-
sions (bottom row) recorded by MRI. 
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and Young’s moduli, bulk compressional modulus, fre-
quency dependencies of these moduli, nonlinearity, Pois-
son’s ratio, viscosity, poroelastic parameters, anisotropy and 
heterogeneity indices, etc. However, in most practical cases, 
there is no need to have a comprehensive mechanical charac-
terization of the tissue of interest and even just one elasticity 
parameter, such as Young’s modulus, may be sufficient to 
address some diagnostic tasks. Though such grossly simpli-
fied mechanical characterization might be quite adequate in 
most cases, one should bear in mind that the level of appro-
priate simplification in characterizing a biomechanical sys-
tem must be carefully estimated. 

The term “elasticity” and similar common terms “hard-
ness” and “stiffness” correspond most closely to a rigorous 
physical parameter – Young’s modulus, E. The significant 
dependence of the Young’s modulus on structural changes in 
the tissue is the basis for the palpatory diagnosis of various 
diseases, such as detection of cancer nodules in the breast or 
prostate. Detection of a mechanical heterogeneity by manual 
palpation is based exclusively on sensing the variations of the 
Young’s modulus of tissue (or shear elasticity modulus, μ, 
which is approximately equal to E/3 for soft tissues). 

Soft tissues are called "incompressible" because their bulk 
compressional modulus, K, is generally several orders of 
magnitude larger than the shear modulus. As a result, a short 
external stress applied to soft tissues causes mainly a change 
in the shape of the stressed tissue, while the volume remains 
constant with a high degree of precision. If a soft tissue is 
deformed, the relationship between the stress and strain pat-
terns is completely defined by the Young’s modulus only, 
regardless of the K value for the tissue, and whether it is in-
finitely large or is only a few orders of magnitude higher 
than E.  

Bulk compressibility and shear elasticity are dependent 
on different features of tissue. Bulk compressibility modulus 
depends on short range molecular interactions and is defined 
mainly by tissue molecular composition while shear elastic-
ity is defined by structural peculiarities of tissue, its cellular 
and higher level of architecture [69].  

Water is the most abundant constituent of soft tissues. 
Consequently, the major contribution to bulk modulus of 
tissues comes from hydration, that is the interaction of polar, 
charged, and hydrophobic atomic groups of organic sub-
stances with molecules of water. Therefore, the bulk modulus 
for all the soft tissues is close to that of water and varies within 
only about 10% [69]. In contrast to that, the range of variability 
of structural features of tissues, such as geometrical parameters 
of cells in different tissues and the degrees of heterogeneity and 
anisotropy, is incomparably greater. Therefore, the shear elas-
ticity for different soft tissues varies over four orders of magni-
tude and, even within one tissue, may change by hundreds of 
percent during such process as development of a tumor or an 
ordinary muscle contraction [30]. 

IV. THEORETICAL BASIS OF ELASTICITY IMAG-
ING 

Evaluation of the mechanical properties of tissues from 
data obtained using various elastographic techniques is often 
based on modeling tissue as a linearly viscoelastic and in-
compressible medium. Viscoelastic models assume that soft 

tissue is a solid (single phase) medium and does not consider 
the fluid motion in the tissue. Alternatively, tissue can be 
treated as being composed of porous solid phase and fluid 
phase that inhabits the pores of the solid matrix. Such an 
approach in elastography, called poroelastography [70-77], is 
based on the poroelastic model developed by Biot [78, 79]. 
Poroelastic material may be compressible even if it consists 
of an incompressible solid and fluid. However, for time 
scales shorter than the characteristic time of fluid motion, the 
model of a viscoelastic and incompressible medium is a good 
first approximation which is sufficient to address most of the 
biomechanical problems arising in elasticity imaging. 

In cases where a solution is to be obtained without con-
sidering the object as linearly elastic, one can also use non-
linear solutions which are much more elaborate [80-82]. 
However, the results obtained with the use of nonlinear solu-
tions often do not alter qualitatively the answers obtained 
under the linear elastic model. The literature on the theoreti-
cal physics of elasticity imaging is quite limited but a com-
prehensive analysis of the problem of reconstruction of 3D 
elastic modulus distribution is given in the book by A.R. 
Skovoroda [83]. This problem was analyzed by several 
authors [51, 84-96], however, in the following discussion we 
will closely follow the logic and concepts developed by 
Skovoroda.  

A. Elasticity Equations 

The general linear equations of dynamic equilibrium de-
scribing the motion of a mechanical body in Cartesian coor-
dinates x1, x2 and x3 are [96, 97]: 

 

    (1) 

where: ij are components of stress tensor, ui are components 
of displacement vector, fi is the body force per unit volume 
acting on the body in the xi direction,  is density of media, 
and t is time. The components of the stress tensor in an iso-
tropic compressible medium are given by the following 
equation [98]: 
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ters. In viscoelastic tissue, there is a time delay between 
force application and any displacement that occurs. In a dy-
namic mode where force is applied in time, the development 
of stresses in time provides information on viscosity. This 
requires knowledge of the relationship between the time 
course of stress application and the time constants of the 
tissue response. If the body is deformed more slowly, only 
static deformation needs to be considered. For static defor-
mation the right part of (1) is zero and time-dependent terms 
in (2) vanish. Therefore, for static deformation the mechani-
cal properties of the medium are completely characterized by 
the Lamé parameters. The Lamé parameters can be written in 
terms of two other independent parameters, such as Young’s 
modulus E and Poisson’s ratio  [85]: 

  

μ =
E

2(1+ )
,    =

E

(1+ )(1 2 )
.      (5) 

For incompressible media like most tissues or other water 
based systems, Poisson’s ratio is close to 0.5. As a result, for 
static deformations, a single elastic parameter – the shear 
modulus μ (or Young’s modulus E = 3μ) – fully describes 
the static mechanical properties of the tissue. In addition to 
(1) we have the equation of incompressibility which shows 
that the divergence of the displacement vector equals zero:  
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This last equation represents the condition that when 
force is applied to an object with Poison’s ratio equal to 0.5, 
all the deformation is related to changes of the shape but not 
the volume of the object. For the static case and under this 
condition (6), the stress-strain relation (2) reduces to: 

,2 ijijij p μ+=        (7) 

where p is an internal pressure defined as: 

).(lim
0 ,

=p        (8) 

Therefore, by combining equations (1), (4), (6-7), the 
forward problem is formulated as a system of four equations 
containing three components of displacement vector ui and 
the unknown pressure p. The boundary conditions for these 
equations can be described in terms of displacements or 
stress on the surface of object. Techniques for solving such 
boundary problems are well developed and can be used to 
obtain the solution to the forward problem [99].  

C. Inverse Problem 

Elastic modulus reconstruction in an inhomogeneous ma-
terial can be posed in a number of ways [51, 83-95, 100-
102]. These approaches can be generally grouped into two 
categories: direct and indirect (model-based) reconstruction 
techniques. If all necessary components of the internal dis-
placement vector and strain tensor are available at any point 
within the object, then reconstruction algorithms based on 
the equilibrium equations can be used to describe the un-
known distribution of Young’s modulus - these techniques, 
therefore, belong to direct reconstruction methods.  

The term  for a compressible medium, or the internal 
pressure p for the incompressible case, is the source of insta-
bility for solving the inverse problem and it should be elimi-
nated from the equilibrium equations (1), (4), (6-7). Combin-
ing these equations the pressure gradient can be expressed as 
[98]: 
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Here, we imply summation over repeated index j, and the 
lower index after a comma means differentiation with re-
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(10) 

If all components of the strain tensor ij are known, equa-
tions (10) are the system of three equations for the unknown 
spatial distribution of shear elastic modulus μ. Note here that 
(10) is valid for both compressible and incompressible cases. 
The boundary conditions for (10) could be defined on the 
areas of medium homogeneity, where μ does not depend 
significantly on spatial coordinates. For special cases, for 
example plane strain deformation, equations (10) can be 
simplified and reduced to single equation.  

Alternatively, the internal pressure p could be eliminated 
by integrating the first of these equations along x1, the sec-
ond along x2 and third along x3, and combining resulting ex-
pressions afterward [82]. Such an approach permits avoiding 
additional differentiation of noisy displacement components 
and improves the stability of the inverse problem. The major 
advantage of the direct reconstruction method is that this 
procedure permits local reconstruction of the elastic modulus 
within a body without knowledge of global boundary condi-
tions for the forward problem. 

D. Model-Based Approaches 

Unfortunately, in direct reconstruction methods, it is of-
ten difficult to formulate and solve the inverse problem for 
an arbitrary geometry and elasticity distribution. However, if 
any prior knowledge or assumptions about the geometry of 
the object and boundary conditions can be made, the inverse 
problem can be solved by using repeated solutions of for-
ward problems (1), (4), (6-7) with adjusted elasticity parame-
ters [102, 103]. Using an analytic or numerical solution to 
the forward problem and having experimentally measured 
the displacement (or strain) distribution, the unknown elas-
ticity modulus can be estimated by minimizing the error 
function , that is, the difference between experimentally 
measured and theoretically predicted data. For instance, if 

axial components of the strain tensor 
 22

exp  are measured in 

the region of interest S and the model forward problem solu-

tion 
  22
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fined as:  
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Therefore, the elasticity reconstruction reduces to a 
minimization of the error function of (11) with respect to the 
unknown elasticity distribution μ(x). If elasticity variations 
of the object within the region of interest can be modeled 
based on the object geometry or any other assumptions, then 
a model-based reconstruction can be performed [104].  

E. Acoustic Radiation Force 

One of the major problems in the model-based recon-
structive approaches is the need to incorporate boundary 
conditions to solve the forward problem. In practice, bound-
ary conditions in tissue could be very complicated and the 
error in the definition of boundary conditions could signifi-
cantly reduce the quality of reconstruction. A possible solu-
tion to this problem was suggested in [38] where acoustic 
radiation force of the focused ultrasound wave was used to 
induce the motion of the tissue. The dynamics of this highly 
localized motion is defined by the parameters of acoustic 
excitation and the mechanical properties of tissue, and only 
weakly depends on the boundary conditions. Analytical 
equations describing the spatial and temporal behavior of the 
radiation force induced shear displacement and waves in 
tissue-like media have been derived in [38, 45, 46]. Figures 3 
and 4 adapted from [38] illustrate the calculated tissue re-
sponse to acoustic radiation force generated by a focused 
ultrasonic wave.  

Figure 3 shows the distribution of axial displacement in-
duced by a focused ultrasonic beam with a 3 MHz carrier 
frequency modulated with a 1 kHz sinusoid and spatial- and 
temporal-peak intensity of 10 W/cm2. The parameters of 
tissue were chosen close to those of liver. The spatial distri-
bution of axial displacement at an arbitrarily chosen time is 
shown. The absolute maximum of the displacement is near 
the geometric focus on the axis of the ultrasound beam. 
Neighboring local minima and maxima are about a half 

wavelength from each other. Fig. 3 shows only axial dis-
placement, however, that radial displacement is an order of 
magnitude smaller than axial displacement [38]. 

Fig. 4 illustrates the temporal behavior of the axial dis-
placement in the focal plane, i.e., in the plane near the geo-
metric focus of the transducer and parallel to the beam axis. 
A rectangular 100 μs duration acoustic pulse and a tissue 
with shear wave speed 5.2 m/s were used in this simulation. 
Initially, displacement magnitude along the beam axis in-
creases with time. This increase continues due to inertia for 
some time after the acoustic pulse is terminated. Displace-
ment reaches its maximum at the time needed for the shear 
wave to travel the distance equal to the depth of the focal 
region. After reaching the maximum, the displacement starts 
to decrease, due the absorption of the shear wave as well as 
due to the formation of a diverging cylindrical wave propa-
gating away from the axis. At that stage, the distance be-
tween the wavefront and the axis of the beam linearly in-
creases as in accordance with the speed of shear wave, which 
is proportional to the square of shear elasticity modulus (in 
an infinite, isotropic and homogeneous medium).  

Local viscoelastic properties of tissue may also be evalu-
ated from the data on tissue motion induced by a radiation 
force impulse in the focal region of the focused ultrasound 
beam, which is the basis of Acoustic Radiation Force Im-
pulse (ARFI) imaging [41, 105-107]. Here, we consider an 
example of the model-based reconstructive approach based 
on a semi-analytical solution for focused ultrasound loading 
[82]. In the case of the tissue response to the focused ultra-
sound radiation force impulse, the problem is symmetrical 
with respect to the direction of the ultrasound beam. There-
fore, the problem could be considered in a cylindrical coor-
dinate system (r, ,z), where z-axis is aligned with the acous-
tic radiation force F. Displacements and force depend only 
on coordinates r and z. In cylindrical coordinates the equa-
tions of dynamic equilibrium (1) has a form:  

 

Fig. (3). Typical distribution of the axial (i.e., shear) displacement induced by sinusoidally modulated radiation force of focused ultrasound. 
Reproduced with permission from [38].  
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where ur , uz and rr, zz, , rz are components of dis-
placement vector and stress tensor in the cylindrical coordi-
nate system. An incompressible medium with zero volume 
viscosity was assumed in (2). Using the Hankel transform of 
the force F, displacements ur, uz and the pressure p, equa-
tions (12) are reduced to a single differential equation for 
function W: 

  

2 ( 2W W )

t2
+
μL(W )

+
μ* L(W )

t

2 f
= 0,   (13) 

where 
  
L(W ) =W

IV 2 2
W +

4
W , primes mean differen-

tiation with respect to z, W and f are the Hankel transforms 
of the displacement uz and the force F, respectively, and  is 
the variable of integration: 

  

F(r, z, t) = f ( , z, t)J
0
( r)d

0

                (14)
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The boundary conditions for (13) assume that  W and W  
are zero away from the focus. If the dependence f( ,z,t) is 
known, or can be evaluated, equation (13) can be solved nu-
merically using, for example, a three level difference 
scheme. Thereby, the general 3D problem is reduced to a 1D 
problem, which can be solved fast and with high accuracy. 

 

Fig. (4). Generation and propagation of the shear wave shown at different times after transmission of the acoustic pulse. Reproduced with 
permission from [38].  
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Figures 5a and 5b present the time dependence of the ax-
ial displacement uz at the focal point for various elastic and 
viscous properties of the medium. In the calculations the 
load was distributed over the focal spot as an ellipsoid of 
rotation (for details, see [82]).  

The results show that the time dependence of the dis-
placement is sensitive to changes in the mechanical proper-
ties of the medium. An increase in elasticity of the medium 
leads to decrease in both displacement magnitude and time 
needed for the displacement to reach the maximum. High 
viscosity reduces the displacement amplitude and increases 
the relaxation time.  

Using the solution to this forward problem, the inverse 
problem can be solved by minimizing the error function (11).  

V. ELASTICITY IMAGING METHODS  

Over the last two decades, there has been significant de-
velopment in different methods to perform elasticity meas-
urements. However, every elasticity imaging method in-
volves two common elements: the application of a force or 
stress and the measurement of a mechanical response. The 
force or stress source can be generated at least four different 
ways (see Sec II.A). For EI, the most common types of stress 
have been from external sources such as compression de-
vices, external vibrators, or acoustic radiation force. The 
primary (physiological sources of motion), particularly car-
diac motion, secondary, and fluid flow have been used but to 
lesser degrees.  

The measurement method can be performed using differ-
ing physical principles including magnetic resonance imag-
ing (MRI), ultrasound imaging, X-ray imaging, optical and 
acoustic signals. 

Each elasticity imaging method can be characterized by 
the methods used for force excitation and measurement of 
the tissue response. Fig. (6) provides a block diagram of 

elasticity measurement and imaging techniques which will 
be detailed below. The techniques are categorized by their 
excitation method, mechanical or ultrasound radiation force. 
Also, a classification is made between point measurement 
methods and imaging methods. 

A. Sonoelastography 

A method called sonoelasticity or sonoelastography in-
volves mechanical generation of harmonic shear waves and 
measurement of the wave propagation with Doppler or ultra-
sound imaging techniques. The first studies utilized external 
actuators in contact with the skin to induce motion into the 
tissue [30, 32, 35, 49]. These actuators were driven with a 
harmonic signal to induce shear waves in tissue so that shear 
wave speed could be measured and used to obtain estimates 
for the shear modulus. In the study reported by Krouskop, et 

al., [30] a motorized actuator was placed on the medial side 
of the thigh to induce shear waves into the muscle tissue and 
an ultrasound transducer was coupled to the lateral side of 
the thigh to measure the induced motion using Doppler tech-
niques. The elastic modulus of the muscle was measured in 
different contraction states using this system. Lerner, et al. 
used an acoustic horn to generate wave motion in phantoms 
and excised tissue and used a color Doppler system to meas-
ure the resulting motion [31]. Yamakoshi, et al., proposed 
using a mechanical actuator coupled to the surface of a phan-
tom or a subject’s skin to induce vibration [32]. An ultra-
sound transducer was placed in proximity to the actuator to 
insonify the vibrating region and measure the induced shear 
waves.  

In recent years, sonoelastography has been modified to 
incorporate two mechanical actuators. The piezoelectric 
actuators are placed on opposite sides of the object and 
driven at frequencies  and  + . The shear waves 
interfere in the medium resulting in an apparent wave called 
a “crawling wave” [108]. The speed of the crawling wave 

 

(a)                                                                          (b) 

Fig. (5). Displacement at the focal point in response to ultrasound radiation force impulse for different (a) shear elasticity m (b) shear viscos-
ity D (Adapted from [82]). 
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wave” [108]. The speed of the crawling wave interference 
pattern travels at  

  
c

pattern
2

c
s
,  (15) 

where cs is the shear wave speed and assuming that  << 
. In practice  is in the range of /200 to /100 so that 

the crawling wave can be imaged with the ultrasound scan-
ner’s frame rate (typically less than 50 frames/s). 

Sonoelastography has been used to make images of the 
distribution of shear wave velocities in phantoms, human 
prostate, and skeletal muscle [109-112]. See Fig. 7 of [113] 
for image examples. The frequency  can be varied to ac-
quire information necessary for viscoelastic characterization. 

B. Quasi-Static Elastography 

A conceptually simple approach to extracting elasticity 
information from soft tissues involves acquiring maps of 
anatomy before and after inducing a small deformation of 
the tissue. Radiofrequency (RF) echo signals are typically 
the “maps of anatomy” used and tiny (micron-scale) motion 
induces a change in the phase of the RF echoes that can be 
tracked (although generally the deformations used are much 
larger). The most common methods of tracking motion in RF 
echo signals are correlation-based which can produce unbi-
ased estimates of displacement with very low variance. Dis-
placement can be tracked in 1D, 2D or 3D, and the gradient 
of the displacement is displayed as a relative strain image. 
Many groups around the world have contributed to this form 

 

Fig. (6). Block diagram of elasticity measurement and imaging and different methods included within this imaging modality. The techniques 
are categorized by their excitation method, mechanical or ultrasound radiation force. Also, a classification is made between point measure-
ment methods and imaging methods. Ultrasonic elasticity imaging methods are expanded to illustrate the broad range of approaches. A simi-
lar expansion of the MR techniques, as well as other approaches such as optical or X-ray methods, is excluded for brevity. [Acronyms: 
SWEI: Shear wave elasticity imaging; SSI: Supersonic shear imaging; SDUV: Shearwave dispersion ultrasound vibrometry; ARFI: Acoustic 
radiation force impulse imaging]. 
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of elasticity imaging, but it is reasonable to attribute early 
strain image formation to Cespedes and Ophir [34]. 

Although motorized fixtures in the laboratory environ-
ment are convenient for controlled deformation, clinical im-
plementation typically involves freehand scanning. Freehand 
scanning often induces complex motion which requires real-
time implementations for instant feedback to the user to con-
trol the direction of deformation [114]. Freehand scanning is 
usually induced at a rate resulting in nearly completely elas-
tic deformations making interpretation much easier than it 
otherwise might be. The most common clinical application is 
breast imaging, but any organ that can be clinically palpated 
has been investigated including prostate, thyroid, muscle and 
lymph nodes [115-118]. Direct inversion for elastic modulus 
estimation is possible with sufficiently accurate and low 
noise displacement estimates and known boundary condi-
tions. However, iterative reconstruction methods are most 
common and are generally more reliable. As described 
above, force information, in addition to the measured dis-
placement field, is required to obtain modulus reconstruc-
tions on an absolute scale, but relative modulus distributions, 
accurate within a scale factor, are possible based on dis-
placement estimates alone. 

C. Acoustic Radiation Force Impulse (ARFI) Imaging 

A group at Duke University has been studying the use of 
impulsive acoustic radiation force for mapping mechanical 
responses of tissue [41]. The impulsive force generates a 
localized displacement of the tissue. When the force ceases, 
the tissue relaxes to its original position. A number of pa-
rameters can be used to characterize the response of the tis-
sue, including the peak displacement, the time that it takes to 
reach peak displacement, and the recovery time [119]. Typi-
cally, the peak displacement is displayed in an image. The 
peak displacement has been correlated with the inverse of the 
modulus of the object under interrogation both in finite ele-
ment models and experimentally [105, 107]. The excitation 
is performed at one location and the response is measured, 
and then the excitation line is translated and the response is 
measured. The alternations of stimulation and detection are 
performed to build up images of the tissue response [41]. 
This process can be parallelized to push and track the tissue 
displacements simultaneously along multiple lines of sight 
[120, 121].  

ARFI imaging has been utilized in numerous applications 
such as phantom imaging [105, 119, 122], imaging thermally 
induced lesions [123, 124], abdominal imaging of lesions 
[125-127], prostate imaging [128], and imaging of the car-
diovascular system including the heart [129-131] and vessels 
[132-141]. See Figs. 5-9 of [142] for image examples. 

D. Transient Elastography (TE) 

Transient Elastography (TE) uses an external actuator to 
provide a single cycle of low-frequency (typically around 50 
Hz) vibration and ultrasound methods to track the resulting 
motion. This type of excitation generates four types of waves 
including a compressional and shear wave in the medium. 
The compressional and shear waves are separated in time 
because the longitudinal wave speed is, in most cases, much 
faster than the shear wave [143, 144]. Applying a sinusoidal 

excitation at low frequencies with a mechanical actuator with 
a small cylindrical footprint can cause biases due to wave 
diffraction from the cylindrical source. Using a transient 
excitation avoids these biases so that the shear wave can be 
separated from the compressional wave and any reflected 
waves [143, 144]. 

Ultrasound based motion tracking is an important part of 
this technique. Like other techniques that use ultrasound 
imaging to measure the shear wave propagation, motion es-
timation can be performed using cross-correlation of con-
secutively acquired radiofrequency data. The location of the 
maximum of the cross-correlation function of two echo sig-
nals is used to find the time shift between the two signals. 
Using the longitudinal speed of sound, this time shift esti-
mate determines how much motion has occurred. The use of 
cross-correlation in this application has been studied and 
optimized [145, 146]. Early measurements of shear waves 
produced by mechanical actuation were reported by Dutt, et 
al. [147]. 

TE has been used both as a one-dimensional (1D) meas-
urement technique [148, 149] as well as a two-dimensional 
(2D) imaging technique [150]. The technique has been de-
veloped for measurement of stiffness in the liver in a product 
called FibroScan® manufactured by EchoSens [151]. TE has 
also been employed for measuring stiffness in phantoms, 
skeletal muscle, breast, skin, and blood clots [148, 149, 152-
158]. 

E. Shear Wave Elasticity Imaging (SWEI) 

Shear Wave Elasticity Imaging (SWEI) was initially de-
scribed theoretically by Sarvazyan et al. [38], and investi-
gated experimentally by Nightingale and Trahey [159-162] 
and their combined work was a catalyst for many investiga-
tions and development of other techniques that followed. 
The use of modulated ultrasound was proposed to produce 
an acoustic radiation force that would create shear waves that 
could be detected by optical, acoustic, ultrasound, or MRI 
methods. The radiation force acts as a “virtual finger” that 
may be used to palpate the organ from the inside, thereby 
replacing the physician’s fingers on the surface of the body 
or organ. 

In SWEI, compared to other approaches in elasticity im-
aging, the induced strain in the tissue can be highly localized 
since the remotely induced shear waves are fully attenuated 
within a few wavelengths distance. The very large attenua-
tion of shear waves, as compared with the compressional 
waves where the attenuation per wavelength is two to three 
orders of magnitude less, is the main reason that shear waves 
have been ignored for decades as a possible means of obtain-
ing information on the mechanical properties of tissue. Inter-
estingly, this unfavorable feature of shear waves - their high 
absorption - is one of the factors providing the feasibility of 
SWEI. Due to the high attenuation of shear waves it is possi-
ble to induce mechanical oscillations within a very limited 
area of tissue in the vicinity of the focal point of a focused 
ultrasound beam. Consequently, local evaluation of viscoe-
lastic properties is greatly simplified since, in many cases, 
trivial boundary conditions can be assumed and an infinite 
medium model used to reconstruct tissue mechanical proper-
ties. 
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The deformations induced by focused ultrasound radia-
tion force could be very small, even at the sub-micron level. 
Therefore sophisticated signal processing techniques have 
been introduced to detect the resulting small motion [101, 
146, 163-170]. 

The group at Duke University has studied different tis-
sues using the SWEI for material characterization [162]. 
Among many applications they have developed is their 
method for assessing the stiffness of the liver. A shear wave 
is created and tracked at lateral positions from the focal posi-
tion using a parallel tracking method [120]. An algorithm 
called RANSAC [171] is used to find the time at which the 
peak of the shear wave passes by the tracking location [106]. 
The elastic version of the shear wave speed equation is used 
to estimate the shear modulus of the tissue. This method has 
been used for investigation of phantoms, prostate, liver, and 
cardiac tissue [106, 172-177]. 

F. Supersonic Shear Imaging (SSI) 

In SWEI and ARFI imaging the radiation force is focused 
at a single location. An extension of these methods is to fo-
cus the radiation force in one location and then change the 
depth of the focal location so that the shear waves created 
from multiple focal locations constructively interfere to 
make a conical shear wave [43]. This method is called super-
sonic shear imaging (SSI) because the radiation force focal 
point moves at a rate that is faster than the speed of the shear 
wave in the medium, providing credence to the “supersonic” 
nomenclature [178]. The shear wave created forms a kind of 
Mach cone and the Mach number of the excitation can be 
adjusted to make the shear wave directionally oriented.  

A critical element to the performance of this method is 
the ability to image the shear wave propagation which re-
quires the use of an ultrafast scanner that is capable of 5000 
frames/second or more. This high frame rate is achieved by 
eliminating focusing when transmitting pulses used for mo-
tion detection. Instead, one plane wave or a set of plane 
waves with different angular directions are transmitted for 
tracking the shear wave propagation [43, 179]. The shear 
wave propagation is measured over a large field of view and 
the wave equation inversion is used to assess the shear wave 
speeds and therefore the viscoelastic moduli. SSI has been 
used in the assessment of phantoms, liver, breast, and skele-
tal muscle [180-182]. See Figs. 6-10 of [183] for image ex-
amples.  

G. Vibro-Acoustography (VA) 

Vibro-acoustography (VA) is a method that uses the 
acoustic response (acoustic emission) of an object to the 
harmonic radiation force of ultrasound for imaging and ma-
terial characterization [39, 40, 184, 185]. The acoustic emis-
sion is generated by focusing two ultrasound beams of 
slightly different frequencies at the same spatial location and 
vibrating the tissue as a result of ultrasound radiation force 
exerted on the object at a frequency equal to the difference 
between the frequencies of the primary ultrasound beams. 
The two co-focused ultrasound beams of slightly different 
frequencies f1 and f2 ( f = f1-f2 << f1, f2) intersect at their 
joint focal point. For typical vibro-acoustography applica-
tions, f1 and f2 are on the order of 2-5 MHz and f is typi-

cally 10-70 kHz such that there are at least two orders of 
magnitude in difference insuring that f = << f1, f2. The ra-
diation force from these two beams has a component at f 
(called dynamic ultrasound radiation force), which vibrates 
the object. The acoustic response of the object to this force is 
detected by a hydrophone. The co-focus of the ultrasound 
beams is raster scanned across the object, and the resulting 
acoustic signal is recorded. An image of the object is formed 
by modulating the brightness of each image pixel propor-
tional to the amplitude of the acoustic signal from the excita-
tion point of the object.  

Vibro-acoustography images have some unique charac-
teristics that set it apart from traditional ultrasound imaging. 
This is partly due to the nonlinear phenomenon of frequency 
conversion in this method. For example, VA images are 
speckle free, which is a significant advantage over conven-
tional pulse-echo imaging. VA also has the ability to image 
specular surfaces regardless of the orientation of the trans-
ducer with respect to the surface, while B-mode ultrasound 
imaging can only visualize a specular surface if the trans-
ducer is perpendicular to the surface. 

VA may be used for a variety of imaging and characteri-
zation applications, including medical and industrial applica-
tions. In medical imaging, VA has been tested on breast 
[186-190], prostate [191-194], and thyroid [195, 196]. Vi-
bro-acoustography has been used for imaging mass lesions in 
excised human liver [197], arteries [198, 199], bone [200, 
201], and microbubbles [202, 203]. 

Although VA is primarily an imaging technique, methods 
for quantitative estimation of viscoelastic parameters of tis-
sue using inverse problem approaches have been presented 
[204, 205]. The authors studied several finite-element ex-
periments and solved for the material properties using simu-
lated vibro-acoustic data. Comparisons of vibro-acoustic 
experiments and finite-element inverse problem solutions 
have shown good agreement.  

H. Harmonic Motion Imaging (HMI) 

A technique called harmonic motion imaging (HMI) uses 
ultrasound modulated at low frequencies (10-300 Hz) to pro-
duce oscillatory force [42, 206]. The motion is measured at 
the vibration center and used for assessing the viscoelastic 
properties of tissue [207, 208]. The radiation force is typi-
cally produced by a very large aperture transducer and the 
motion is detected by a small phased array transducer placed 
through a hole in the larger transducer.  

The main application of this technique is for monitoring 
high intensity focused ultrasound (HIFU) therapy. The same 
transducer that is used for radiation force can also be used 
for creating thermal lesions. Then, the HMI technique can 
evaluate if the tissue has stiffened by monitoring the dis-
placement induced by the radiation force [209-214]. 

I. Shearwave Dispersion Ultrasound Vibrometry (SDUV) 

Shearwave Dispersion Ultrasound Vibrometry (SDUV) 
encompasses a set of techniques which involve creation of a 
shear wave either by an external actuator or internally using 
acoustic radiation force [215, 216]. The resulting tissue mo-
tion is recorded using ultrasound-based techniques. One of 
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the keys to this method is the emphasis on shear wave speed 
dispersion and taking advantage of this dispersion to charac-
terize the shear elasticity and viscosity using equation (12). 
We will focus on the radiation force-based implementation. 
An early implementation was much like the SWEI method 
that used modulated ultrasound to excite the tissue [215] and 
varied the modulation frequency to assess the shear wave 
speed dispersion.  

However, this implementation was not easily compatible 
for modern ultrasound scanners but it was adapted so that 
excitation pulses were interleaved with pulses used for mo-
tion detection. The advantage of using a sequence of excita-
tion pulses transmitted at a rate of fp, was that motion was 
stimulated not only at fp but at its harmonics, 2fp, 3fp, 4fp, etc. 
Multiple pushing pulses increase the signal-to-noise (SNR) 
ratio at known frequency components, and the data is ac-
quired all in one sequence of excitations. With data at several 
frequencies, the phase gradient method can be utilized to 
estimate the shear wave speed dispersion in one measure-
ment. Thus far SDUV has been demonstrated in measure-
ment of viscoelasticity in phantoms, skeletal muscle, porcine 
liver, and human prostate [215-218]}. 

J. Magnetic Resonance Elastography (MRE) 

A method called Magnetic Resonance Elastography 
(MRE) was developed to measure the propagation of shear 
waves in tissue using magnetic resonance imaging (MRI) 
techniques [49, 219, 220]. A conventional MRI scanner em-
ploys a phase-contrast technique to measure the displace-
ment patterns of the induced waves. Typically, an external 

actuator induces a harmonic shear wave in the tissue with 
frequencies in the 50-1000 Hz range, but specialized equip-
ment can provide measurements at frequencies 1-10 kHz 
[221]. A motion-sensitizing gradient is used to measure the 
motion in a specified direction at a specific frequency. The 
scanner’s motion-sensitized gradient and the mechanical 
actuator are synchronized. Cyclic motion of the magnetic 
spins in the presence of these motion-sensitizing gradients 
produces a measureable phase shift in the acquired MR sig-
nal, which is then used to quantify the displacement. The 
phase shift caused by harmonic motion can be written as [49, 
220]  

   
r ,( ) =

NT G
0 0( )

2
cos k r +( ) ,  (16) 

where  is the gyromagnetic ratio, N is the number of gradi-

ent cycles, T is the period of the gradient waveform, 
   
G

0
is 

the motion-sensitizing gradient vector, 
  0

is the displacement 

amplitude vector,   k is the wave vector, r is the spin position 
vector, and  is the relative phase of the mechanical and 
magnetic oscillations. It is important to note that the phase 
shift is proportional to the dot product of the motion-
sensitizing gradient and displacement vectors. The use of 
different motion-sensitizing gradients, polarized in different 
directions, allows for the acquisition of the full three-
dimensional (3D) displacement field. The induced shear 
wave motion can be tracked for amplitudes as small as 100 
nm [49]. Each acquisition yields a “wave image” corre-
sponding to the displacement of the magnetic spins. The 
phase offset, , is adjusted to obtain multiple wave images, 
such that the harmonic component at the mechanical driving 
frequency can be extracted. In practice, 4 or 8 phase offsets 
are used [220]. A wave image and the corresponding elasto-
gram from an MRE experiment are shown in Fig. 7 where 
the scale of the elastogram is in kPa. 

MRE has been applied in a number of clinical areas in-
cluding elasticity imaging of breast [222-224], liver [225-
228], brain [229-233], heart [234-238], lung [239-241], carti-
lage [221, 242, 243], skeletal muscle [244-249], prostate 
[250, 251], spleen [252], thyroid [253], and the vasculature 
[254, 255]. The inherent 3D imaging capabilities make MRE 
very attractive for elasticity imaging because whole organs 
can be mapped. This advantage also provides that the field of 
view can be freely oriented for the user, and no acoustic 
window is necessary. The MRE technique is operator inde-
pendent, which provides for better reproducibility. Addition-
ally, body habitus is less of an issue than with ultrasound-
based techniques as long as sufficient motion can be induced 
into the organ of interest. 

K. Endogenous Motion Imaging 

Endogenous motion in the body can be used as the exci-
tation for elasticity imaging. The pumping action of the heart 
provides an excitation that can be used within the heart and 
the vascular system. The electromechanical stimulation of 
the heart muscle generates waves in the cardiac tissue that 
have been measured [256-260]. The speed of the waves can 

 

Fig. (7). (a) MRE wave image from prostate phantom. Note the 
long wavelength on the left side of the phantom with respect to the 
wavelength on the right. (b) Elastogram showing lesion in red. (c) 
Profile along yellow line in (d). The scale is shear modulus in kPa. 
[  2003 IEEE. Adapted with permission from [185]]. 
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be used to characterize the material properties of the cardiac 
tissue. The pulse wave velocity due to a pressure wave of the 
pumped blood has been measured in arterial vessels for char-
acterization of the elastic properties [258, 261-263]. High-
frame rate ultrasound imaging is required to perform these 
measurements. 

L. Mechanical Imaging (MI) 

Mechanical Imaging (a.k.a. Stress Imaging or Tactile Im-
aging) is a branch of Elasticity Imaging which visualizes 
internal structures of tissue by measuring stress patterns on 
the surface of tissue compressed by a probe with a pressure 
sensor array mounted on its contact surface [65]. Temporal 
and spatial changes in the stress pattern provide information 
on the tissue internal structures with different elastic proper-
ties. The MI probe acts like human fingertips during clinical 
examination. MI mimics manual palpation much more di-
rectly than other elasticity imaging modalities. Laboratory 
studies on breast phantoms and excised prostates have shown 
that computerized palpation is more sensitive than a human 
finger [63, 67, 264].  

Surface stress data recorded by MI provide information 
on the elastic structure of the tissue and allow two-
dimensional and three-dimensional reconstruction of tissue 
structure in terms of elasticity modulus. The data acquired 
allow the calculation of internal lesions such as size, shape, 
nodularity, consistency/hardness, and mobility.  

MI, like nonlinear quasi-static elastography and manual 
palpation, provides high local deformations of tissue (up to 
30-40%). This feature is important for quantitative assess-
ment of tissue nonlinear elasticity, one of the mechanical 
characteristics most sensitive to structural changes in tissue 
accompanying cancer development [265]. Most of the other 
elasticity imaging methods, especially those based on the use 
of acoustic radiation force, do not employ a sufficiently high 
level of deformation necessary for nonlinear elasticity imag-
ing.  

Different MI systems have been created for imaging of 
the breast [266, 267] , prostate [268-270], and vagina [271]. 
It is shown that the potential of MI is not limited only to 
cancer detection but also may provide the differentiation 
between malignant and benign lesions [267]. 

For many of the applications, where tissue abnormalities 
are located within a few centimeters under the accessible 
tissue surface, the sensitivity and specificity of MI may be 
comparable to those of MR and ultrasonic elasticity imaging 
devices. Obviously, MI cannot be used for imaging tissue 
structures located well below the limit of manual palpability. 

VI. ADVANTAGES AND LIMITATIONS OF VARI-
OUS ELASTICITY IMAGING METHODS 

The methods detailed in this article are all aimed at the 
same objective, to quantify the elasticity or viscoelasticity of 
tissue. However, each method has its own nuances in reach-
ing that goal and it is important to understand that, because 
of the frequency dependency of elasticity properties of tis-
sue, great care and consideration must be used when compar-
ing quantitative results among these techniques. The excita-
tion is either an external mechanical force, an internal ultra-

sound radiation force, or an internal endogenous force. The 
excitation is also differentiated by its frequency content 
varying from (nearly) static to dynamic with frequency con-
tent up to 100 kHz. Measurement techniques are based 
mostly on ultrasound or MR imaging techniques, but other 
techniques are used in VA and MI. Lastly, six of the meth-
ods detailed in this review use shear waves. Most of the dif-
ferences for the shear wave methods lie in either the method 
by which shear waves are created or measured, and the in-
version method used to estimate the elastic modulus. A table 
summarizing the excitation and measurement methods and 
some advantages of each elasticity imaging method are listed 
in Table 1. 

Sonoelastography, elastography, TE, MRE, and MI all 
use a mechanical actuation. The advantage of using external 
mechanical actuators is that large motion amplitudes can be 
generated, making the displacement or strain measurement 
process easier, facilitating assessment of tissue elastic non-
linearity and the data is typically less error prone. However, 
in some instances, mechanical actuation also means that ad-
ditional hardware is required. The exceptions are elastogra-
phy and MI wherein the same transducer (the ultrasound 
transducer and pressure sensor array, respectively) is used 
for probing and measurement. In the case of MRE, the actua-
tor is separate from the MRI scanner. In TE, particularly in 
the commercial implementation of FibroScan® (EchoSens, 
Paris, France), the actuator and the ultrasound measurement 
device are coupled together in one package, which makes the 
measurement less awkward. For sonoelastography crawling 
waves, two separate drivers are required which may be trou-
blesome for some clinical applications of the technology. 

ARFI, SWEI, SSI, VA, HMI, and SDUV all create dis-
placement or shear waves using ultrasound radiation force. 
The advantage of this method is that typically only one ultra-
sound transducer is necessary to create the vibration and 
measure the resulting displacement and wave propagation as 
opposed to some methods that need external mechanical ac-
tuation and a separate device to measure the motion. How-
ever, because of limits on the intensity used to avoid both 
mechanical and thermal bioeffects [38, 43, 106, 216], the 
resulting motion amplitude of the shear waves is usually 
below 20 μm. A disadvantage of radiation force methods is 
that it is difficult to induce sufficient deformations beyond 
about 6 cm with current imaging systems. Also, the shear 
wave attenuation is very high so the waves do not propagate 
very far. This is an advantage because the shear waves in-
duced by radiation force are less prone to artifacts from re-
flections and interactions with other tissue boundaries [38]. 
Therefore, more localized elasticity measurements can be 
performed with less dependence on boundary conditions.  

The main difference between MRE and the other meth-
ods mentioned in this article is the use of MRI instead of 
ultrasound for measurement of the tissue deformation. MRI 
has the advantage of providing 3D displacement data at mil-
limeter to sub-millimeter resolution at the cost of acquisition 
time, which can be on the order of seconds to minutes. MRE 
is also limited because MRI scans are expensive and MR 
scanners are less widely available than ultrasound scanners. 

Using ultrasound for elasticity measurement generally 
provides a two-dimensional (2D) mapping of the elasticity 
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unless the ultrasound transducer is physically moved or a 2D 
array transducer is used to obtain 3D displacement data. The 
spatial resolution of the resulting images is typically in the 
millimeter to sub-millimeter range and can be improved by 
using higher frequency ultrasound to perform detection. To 
measure shear wave or endogenous mechanical wave propa-
gation, high frame rates are necessary, except in the case of 
crawling waves with sonoelastography. In practice, this is 
accomplished in one of three ways. In the TE, SWEI, and 
SDUV methods, only one or a few lines are used for the 
shear wave propagation measurement. In this case, the pulse 
repetition frequency (PRF) for each tracking line can be in 
the kilohertz range. SSI is predicated on a dedicated ultrafast 
imaging system that can acquire 5,000-20,000 frames/s. This 
is accomplished by only transmitting a plane wave [43]. Fo-
cusing is performed only in receive. However, it has been 
shown that with such high frame rates, angular compounding 
can be performed to improve the signal-to-noise ratio (SNR) 
of the detection process [179]. These high frame rates allow 
for the investigation of dynamically moving tissues such as 
the heart and vasculature. Lastly, in sonoelastography crawl-
ing waves have been employed so that standard ultrasound 
scanners can capture the wave motion. The shear waves in 
this case have been “slowed” down so that measurements 
can be performed using all lines but with conventional sys-
tems. 

The spatial resolution of the MR- and ultrasound-based 
methods is modulated by the processing and inversion tech-

niques utilized. If maximal spatial resolution of the imaging 
system is used, the images can contain significant levels of 
noise. Filtering techniques often are used to smooth these 
images, but spatial resolution and elasticity contrast can be 
reduced by these methods. The reconstruction speed of the 
elasticity measurements or images depends on the amount of 
data and the complexities of the processing techniques. The 
strain-based elastography methods have been implemented 
to operate in real-time on clinical ultrasound scanners. Other 
methods provide measurement results within seconds while 
others require extensive offline analysis. 

Methods based on measuring displacement or strain can 
be used for elasticity assessment, but true quantitative results 
can be difficult because of the need to know the stress distri-
bution to solve for the elasticity. Shear wave-based methods 
have an advantage because they do not require the stress 
distribution for inversion of the underlying elastic properties 
because shear wave velocity, under limited conditions, is a 
simple function of the shear elasticity modulus.  

However, as usual in imaging, improved resolution, 
minimum bias and variance errors and high speed image 
formation are always desirable. Determining which methods 
are “best” for a specific application or whether any particular 
image quality descriptor is of primary importance when ana-
lyzing and comparing methods and approaches is always a 
task-specific study. Such an analysis is beyond the scope of 
this overview. 

Table 1. Comparison of Different Elasticity Measurement and Imaging Methods 

Excitation 
Method 

Time Course Physical Stress 
Measurement Advantages 

Elastography Quasi-Static Mechanical Ultrasound 

Full strain and modulus images 

Estimate elastic nonlinearity 

Conventional US scanner 

ARFI Dynamic Radiation Force Ultrasound 
Viscoelastic characterization 

Conventional US scanner 

HMI Dynamic Radiation Force Ultrasound Viscoelastic characterization 

VA Dynamic Radiation Force Acoustic High spatial resolution 

Mechanical Imaging Static/Dynamic Mechanical Pressure 
Simple, inexpensive 

Estimate elastic nonlinearity 

Endogenous Motion Imaging Dynamic Endogenous Ultrasound 
Mechanical wave imaging 

High-frame rates 

MRE Dynamic Mechanical MRI 
3D displacement 

Large organ imaging 

TE Dynamic Mechanical Ultrasound 
Simple, inexpensive 

Compact package 

Sonoelastography Dynamic Mechanical Ultrasound 
Full elasticity images 

Conventional US scanner 

SWEI Dynamic Radiation Force Ultrasound/MRI Remote palpation 

SSI Dynamic Radiation Force Ultrasound 
Full elasticity images 

Viscoelastic characterization 

SDUV Dynamic Radiation Force Ultrasound 
Viscoelastic characterization 

High SNR in frequency components 
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VII. CLINICAL APPLICATIONS  

For most of the past two decades, since the first papers 
were published, Elastography has remained largely a re-
search method used by a few select institutions having the 
special equipment needed to perform the studies. Since 2005 
however, increasing numbers of mainstream manufacturers 
have added Elastography to their ultrasound systems so that 
today the majority of manufacturers offer some sort of Elas-
tography or tissue stiffness imaging on their clinical systems. 
This vastly increased availability of Elastography has en-
abled large numbers of new users to try it on all sorts of tis-
sues and lesions that were not envisioned as candidates ini-
tially. Now it is safe to say that some sort of elasticity imag-
ing may be performed on virtually all types of focal and dif-
fuse disease. Most of the new applications are still in the 
early stages of research, but a few are becoming common 
applications in clinical practice. 

A. Breast 

Breast mass evaluation was the first application of Elas-
tography to be studied systematically. The initial clinical 
work in this field appeared in 1997 and demonstrated that 
elastographic imaging was feasible, could be performed on a 
supine patient by compression against the chest wall, and 
showed that cancers generally appeared stiffer (darker) than 
benign lesions and surrounding breast tissue [115]. Also, it 

was noted that cancerous lesions almost invariably appeared 
larger on the elastogram than they did on the corresponding 
sonogram (Fig. 8). The combination of lesion stiffness and 
size relative to the sonogram were used to demonstrate good 
separability of benign from malignant lesions. Later papers 
confirmed these findings in larger numbers of patients with 
reported area under the receiver operating characteristic 
curve (Az) values ranging from 0.89 to 0.95 for distinguish-
ing benign from malignant solid nodules [114, 272-275]. 
Other authors demonstrated the use of color maps to depict 
tissue stiffness [276, 277] and a standard method of grading 
lesions was developed for those using Hitachi systems with 
color display [277]. The initial papers focused on qualitative 
evaluation of relative hardness but more recently methods 
for quantitative or semi-quantitative assessment of nodule 
stiffness have become available. These methods include the 
measurement of strain ratios between the nodule and some 
adjacent reference tissue [278] and the assessment of shear 
wave velocity within nodules [156] which provides an as-
sessment of shear modulus which is related to overall tissue 
stiffness. Clinical studies using these quantitative methods 
are only just now appearing in the literature [180, 279, 280].  

As breast Elastography becomes a mainstream applica-
tion, attempts to standardize technique and diagnostic criteria 
are beginning to appear. As already noted, a set of diagnostic 
criteria have been developed for Hitachi systems, but criteria 
for other systems are newer and just beginning to see wide-
spread application. A set of BIRADS criteria for Elastogra-
phy are reportedly being developed which should help to 
improve the consistency of Elastography for breast mass 
diagnosis.  

Criteria for distinguishing high quality from low quality 
elastographic images are also important since many of the 
images generated during a clinical elastogram acquisition 
may be of low quality and using these images for diagnosis 
could lead to incorrect classification of breast lesions. It is 
not always obvious which images are the best in any se-
quence of elastograms, especially since lesion visibility does 
not always correlate well with overall image quality. For 
example, an image with a high correlation coefficient (a 
measure of elastogram quality) may not show a lesion if the 
displacements and strain values are very small throughout 
the image and an image with a low average correlation coef-
ficient may show a lesion as a low strain region surrounded 
by decorrelation “noise” (Fig. 9). Most manufacturers have 

 

Fig. (8). Sonogram (left side image) and elastogram (right side 
image) of an invasive ductal carcinoma showing a stiff lesion 
(dark) on the elastogram that is somewhat larger than the hypo-
echoic lesion seen on the sonogram (white arrows). 

 

Fig. (9). Sonogram (left image), 1% compression elastogram (middle) and 4% compression elastogram (right) of a fibroadenoma (arrows on 
sonogram). Note that the fibroadenoma is not really visible on the 1% compression elastogram but is visible as an area without decorrelation 
noise on the 4% compression elastogram. The 1% elastogram has less decorrelation noise than the 4% elastogram but a lesion may be more 
visible on the "noisier" elastogram. 
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incorporated some sort of visual feedback on the image to 
help users determine if the elastogram is of diagnostic qual-
ity or not (Fig. 10). The methods used to determine the qual-
ity of images varies widely but as the technology matures 
further, a standard method of determining quality will likely 
be developed and adopted.  

Breast ultrasound has always found a role in the identifi-
cation of cysts, but in recent years the identification of cysts 
has become more difficult. One reason is classical acoustic 
enhancement posterior to cysts is harder to see on current 
systems due to smaller lesion size (with less fluid path to 
cause increased transmission), spatial compounding, and 

multiple transmit focal zones with automatic amplitude 
matching of layers. All these tend to suppress increased 
through-transmission. Cysts produce decorrelated RF lines 
and this can be seen in the strain image as an artifact inside 
cystic lesions (Fig. 11). The presence of a decorrelation arti-
fact within a lesion can be used as an indication that the le-
sion is cystic. Unfortunately, the exact nature of the artifact 
and its appearance depends on the way in which each manu-
facturer chooses to display decorrelation. So the appearance 
of a cyst on an elastogram will vary depending on the scan-
ner used. Still, with standardization, the elastogram may be 
used to identify small debris containing cysts so that biopsy 
can be avoided. Comparison of correlation coefficients from 
within cystic lesions to the values in surrounding tissues is a 
more quantitative way to identify cysts [281]. 

 

Fig. (12). Drawing of the Fibroscan transducer. The piston like 
transducer rapidly indents the skin producing a compressional wave 
and shear waves. Ultrasound is emitted from the transducer to track 
tissue displacement caused by the shear wave to estimate shear 
wave speed. (Drawing from the Echosens web site) 

B. Liver 

The second most common application of elasticity imag-
ing is for the evaluation of hepatic cirrhosis and fibrosis 
[282, 283]. MRE was used for pioneering studies in examin-
ing hepatic stiffness [225-228]. These studies demonstrated 
liver stiffness and viscosity increased with the degree of fi-
brosis up to the level of cirrhosis. In later studies with more 
test subjects, it was found that MRE could provide areas 
under the ROC curves ranging from 0.95-0.99 for distin-

 

Fig. (10). On-screen quality indicators. Left image shows a numerical quality indicator (circled) at the bottom of the image. The closer the 
number to 100 the better.  

 

 

Fig. (11). Cyst appearance. Cyst may display as a dark area with a 
central brighter area. Another common pattern is layered blue, 
green and red colors with in the lesion as shown in the color over-
lay image Figure 11. (Images courtesy of Siemens and from Chi-
orean et al., Med Ultrasonography 2008; 10(2): 73-82. 
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guishing healthy subjects from patients with fibrosis [284]. 
Because of its high negative predictive value, MRE is cur-
rently being used at the Mayo Clinic to determine which 
patients would benefit most from biopsy referral [285]. This 
development is one example of how elasticity imaging has 
served to change medical practice. Despite this encouraging 
seminal work, MRE may not be widely available for evaluat-
ing liver stiffness, and its use as a screening tool may be 
cost-prohibitive compared to ultrasound-based techniques. 

Hepatic stiffness measurements are most commonly per-
formed using a non-imaging device, the FibroScan® from 
Echosens (Fig. 12). This device briefly compresses the liver 
to produce a shear wave that travels through the liver. Ultra-
sound pulses are next used to track the minute tissue dis-
placements caused by the shear wave and liver stiffness is 
estimated from the velocity of the shear wave. Area under 
the ROC curves of 0.84—0.89 for liver fibrosis have been 
achieved by this method with the best performance on mod-
erate to severe fibrosis. Some of the newer ultrasound sys-
tems (i.e. from Siemens and Supersonic Imagine) can also 
estimate shear wave velocity at various locations in the liver 
making local estimates of liver stiffness possible with the 
promise of improved performance [172, 173] (ROC areas of 
0.90 or higher) since the effects of overlying tissue can be 
reduced or eliminated. Since increased liver stiffness corre-
lates well with cirrhosis, such estimates will likely become a 
routine part of hepatic ultrasound when surveillance scans 
for hepatocellular carcinoma are performed. With the current 
high prevalence of chronic hepatitis [286] and a climbing 
HCC rate that has tripled since 1975 [287], this application 
of elasticity imaging may become the most common of all.  

Elasticity imaging has also been used to evaluate focal 
liver lesions. Hepatocellular carcinoma (HCC) detection and 
differentiation from other lesions has been the focus of much 
of this work. HCC lesions are typically stiffer than normal 
liver but the difference may be less pronounced when com-
pared to cirrhotic liver in which the tumors typically occur 
[127]. Preliminary studies are promising for the identifica-
tion of HCC with Az values as high as 0.94 [126, 288]. Re-
cent work has also suggested that HCC may be distinguished 
from other malignancies such as cholangiocarcinoma and 
metastatic disease with reasonable accuracy using elasticity 
estimates [289]. 

C. Prostate 

Prostate gland evaluation for detection of cancer is com-
monly thought of as a logical application of elastography, 
and was the first potential application that was considered 
when elastography was originally developed. It was also the 
application proposed by early proponents of Sonoelasticity 
imaging [33]. Prostatic cancers are frequently not visible on 
standard B-mode ultrasonography so use of elasticity imag-
ing to classify nodules already discovered (as is the case for 
breast elastography) is not possible. This means that to be 
clinically useful, elasticity imaging must detect cancers re-
liably – a task quite different from characterization of an 
already visible mass. Several articles have been published 
showing prostate elastograms [116, 290] (Fig. 13) but ob-
taining quality stiffness images of the prostate gland has 
proved to be more difficult than in the breast [291]. This is in 

part due to problems with tissue lateral motion caused by 
compressing with the tightly curved array transducer and to 
the small amounts of tissue compression that can be 
achieved at depths beyond 1 cm when using such a trans-
ducer. Systems that use shear wave imaging (e.g., ARFI or 
an external vibration device) may be more successful. Com-
pression of the prostate with a balloon surrounding the trans-
ducer has also been tried with some success [292]. Another 
problem in the prostate gland is the very small size of many 
cancer foci (often < 1 mm) making detection with a rela-
tively low resolution elasticity imaging system difficult or 
impossible with current technology. It is also unknown 
whether such small foci are actually stiffer than normal 
prostatic tissue or benign prostatic nodules. On the other 
hand, there is controversy regarding the significance of small 
cancer foci with many small foci corresponding to clinically 
insignificant cancers [293-295]. At any rate, even if prostatic 
elasticity imaging proves insensitive for very small cancer 
foci, it still may be useful as a biopsy guidance tool for de-
tection of larger suspicious foci that can be biopsied during 
US guided extended pattern biopsy [116, 296] so that addi-
tional cores can be taken from areas deemed suspicious on 
elasticity imaging. This will hopefully improve the positive 
biopsy rate so that the number of painful and time consum-
ing transperineal or transrectal saturation biopsies may be 
decreased. 

One application in the prostate gland that may be widely 
used in the near future is ablation treatment monitoring 
[297]. Most tumor ablation methods result in increased tissue 
stiffness [298, 299] that is readily detected using elasticity 
imaging. This allows documentation of the size of the zone 
of treated tissue which is useful since B-mode ultrasound 
cannot easily distinguish between ablated and non-ablated 
tissue once the microbubbles caused by the actual ablation 
process disappear. Examples of monitoring of prostatic and 
liver tumor ablation have appeared in the literature [300-302] 
(Fig. 14). For this application to become widespread, more 
work correlating the zone of cell death and injury with the 
zone of increased tissue stiffness must be performed.  

 

Fig. (13). Prostate B-mode sonogram (upper image) and corre-
sponding elastogram (lower image) showing a small dark area (cir-
cled) corresponding to a malignancy. This focus is not visible on 
the sonogram. Images courtesy of Kaisar Alam, Riverside Re-
search. 
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Fig. (14). Prostate sonogram (left image) showing somewhat in-
creased echogenicity due to bubble formation during HIFU. Elasto-
gram on right shows the ablated area as a clear dark (stiff) region. 
Images courtesy of Remi Souchon. 

D. Thyroid 

Evaluation of thyroid nodules is a logical potential appli-
cation for elasticity imaging because the ultrasound and nu-
clear medicine criteria for distinguishing benign from malig-
nant nodules (size, mural nodularity, echogenicity, activity 
on scintigraphy) are not reliable. The presence of microcalci-
fications increases the risk of malignancy but is certainly not 
an absolute indicator [303]. Several papers have appeared in 
the literature, demonstrating the potential utility of lesion 
stiffness for classifying a nodule as malignant [117, 304]. As 
with other lesions, malignant thyroid nodules tend to be 
stiffer than benign nodules. Elastographic imaging of the 
thyroid can be challenging with present equipment due to 
pulsations from the adjacent carotid artery and due to the 
steeply sloping neck contour which promotes lateral move-
ment of the thyroid (and decorrelation) when applying com-
pression with the ultrasound transducer. Even if the perform-
ance of elastography degrades as more results are reported, it 
should be possible to use elasticity imaging as a tool to help 
decide which nodules to biopsy when many are present 
[305].  

Little work has been performed on the evaluation of dif-
fuse thyroid diseases so far. Since chronic thyroiditis is 
known to increase the firmness of the thyroid on palpation, 
changes are likely to be observable on quantitative or semi-
quantitative elasticity imaging. Results of shear wave veloc-
ity analysis using MRE have confirmed this notion showing 
increased stiffness of the thyroid in Hashimoto’s thyroiditis 
[253]. As quantitative elasticity imaging becomes more 
widespread and more experience is gained, stiffness esti-

mates may become useful for helping to confirm thyroiditis 
though it is not yet clear whether all types of thyroiditis can 
be detected with this method nor is it likely that elasticity 
imaging alone will be able to distinguish between various 
types of thyroiditis. Other elasticity based methods such as 
poroelastography may be helpful here. 

E. Lymph Nodes 

Enlarged or palpable lymph nodes represent a common 
diagnostic problem. Nodes may be enlarged due to infection 
or inflammation either local or remote and may be involved 
with or replaced by malignancy. A method for determining 
whether an enlarged lymph node is likely to be involved with 
cancer or not would be extremely helpful for selection of 
lymph nodes for biopsy in patients with suspected malig-
nancy. At least six papers have appeared which discuss elas-
ticity imaging of lymph nodes [118, 306-310]. Evaluation of 
lymph nodes, using both relative strain values and the sub-
jective Hitachi criteria, have been performed. As with other 
malignancies, cancerous lymph nodes appear stiffer on elas-
tograms than do benign reactive lymph nodes.  

Several studies have shown that elastographic analysis is 
highly specific for malignancy. Using the strain index (Fig. 
15) Lyshchik, et al. found a specificity of 98% whereas 
Saftoiu, et al. reported 91.7%, and Alam, et al. achieved a 
specificity of 100% using pattern analysis. ROC analysis 
was performed in the Alam study yielding Az values of 0.87 
and 0.90, for elastography alone and B-mode sonography 
alone. For combined B-mode and elastography the Az value 
was an outstanding 0.97. Most of the studies have looked at 
neck lymph nodes and some other superficial lymph nodes, 
but one study has looked at nodes seen by endoscopic US. 
Further work using real-time elastography is needed since 
several of the studies were conducted off line using previ-
ously acquired data, but the results so far indicated that elas-
tography combined with B-mode ultrasound will be a useful 
tool for detection of malignancy in nodes and for selecting 
nodes for biopsy.  

F. Arterial Wall/Atheromatous Plaque Characterization 

Work on the use of elasticity imaging for evaluation of 
atheromatous plaque has been underway for more than a 
decade. Atheromatous plaques may lead to arterial thrombo-
sis when they become filled with soft lipid laden macro-
phages and subsequently rupture releasing the lipid contain-

 

 

 

 

 

 

 

 

Fig. (15). Strain ratio index computation. Sonogram of breast lesion on left with color elastogram on right. The ratio of strain within the le-
sion (strain 2) and adjacent to the lesion (strain 1) is computed as 6.68. 
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ing central material causing sudden thrombosis of the vessel. 
Such plaques are called vulnerable plaques and their detec-
tion is important for risk assessment and medical therapy 
[311, 312]. Elasticity imaging has the potential to detect such 
plaques by being able to detect the soft lipid laden center 
[313]. Elastography using intravascular ultrasound (IVUS) 
has been shown to be able to demonstrate vulnerable plaques 
[314] but as IVUS is invasive and requires expensive single 
use catheter mounted ultrasound transducers, it has not be-
come widespread. Some attempts to image atheromatous 
plaque using transcutaneous ultrasound have been made 
[315], but the method is still in the developmental stage. 
More recently, investigations of actual arterial wall elasticity 
have been attempted [316, 317] and there are indications that 
increased wall stiffness is a marker of impending atheroma-
tous disease even prior to the development of increased inti-
mal medial thickening on B-mode ultrasound. Use of the 
transcutaneous method for therapy monitoring has also been 
reported with promising results [318]. Further investigations 
are continuing [319] and this area has promise but faces sig-
nificant technical hurdles before widespread clinical use be-
comes practical.  

G. Thrombosis 

When a venous thrombosis is found using ultrasound, es-
timation of the age of the thrombus is important. Older 
thrombi are adherent to the vessel wall and do not pose a risk 
of pulmonary embolus, whereas acute thrombi pose a sig-
nificant risk of pulmonary embolus but are treatable with 
anticoagulants. Often the age of a thrombus can be inferred 
by clinical history and/or symptoms. Gray scale ultrasound 
signs of an acute thrombus include an enlarged vein and hy-
poechoic thrombus but when the thrombus is moderately 
echogenic and the vein is normal sized, the differentiation of 
acute, subacute and chronic becomes more difficult. Since 
the stiffness of thrombi increases with increasing age [320], 
elasticity imaging promises to be helpful with thrombus age 
determination. An initial study was successful at correctly 
distinguishing acute from chronic thrombus using normal-

ized strain magnitude [321] (Fig. 16) but some difficulties 
have also been encountered in early clinical use [322]. Using 
a combination of backscatter parameters and elastography 
has shown promise for increasing thrombus classification 
accuracy [323]. Elastography has also been used experimen-
tally to estimate the stiffness of arterial thrombus in aneu-
rysms created in a dog model at various stages to determine 
if the method might be useful for pre and post endograft 
evaluation [324]. 

H. Other Tumors 

Tumors of almost all major organs have been studied us-
ing elastography. For pancreatic cancer, initial reports using 
endoscopic ultrasound elastography are promising [325, 
326], and at least one report of successful cancer imaging 
using transcutaneous elastography has been reported [327]. 
There are few reports of testicular elastography, but the use 
of the method for fertility assessment is promising [328]. 
Use of elastography for tumor assessment has been reported 
at meetings [329] but more studies with a larger number of 
tumors of various types need to be studied since histology of 
the different neoplasms varies widely. In the skin, elastogra-
phy has been used to evaluate scleroderma [330], abscesses 
and decubitus ulcers [331] and appears promising for the 
evaluation of melanoma and other skin cancers [332]. One 
report of use of elasticity imaging for salivary gland tumors 
has appeared but results were not promising [333].  

I. Graft Rejection 

Since transplant graft rejection involves both inflamma-
tion and fibrotic change, both of which increase tissue stiff-
ness, elasticity imaging is a logical method to evaluate the 
physical status of transplanted organs. Liver transplant fibro-
sis has been shown to be correlated with transient elastogra-
phy fibrosis scores using the FibroScan® device [334]. Az 
values of approximately 0.90 were obtained for diagnosis of 
advanced transplant fibrosis (fibrosis score  3) using this 
device in line with the performance of the FibroScan® de-
vice for fibrosis of native livers. The same device has also 

 

Fig. (16). Normalized strain in venous thrombosis. The strain in the vein with chronic thrombosis (right hand image) is much lower than the 
strain in the more acute thrombosis (left hand image). The echogenicity of the thrombi are nearly identical in grayscale intensity. Images 
from Rubin JM, et al. J Ultrasound Med 2003; 22: 443-448. 
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been used to evaluate renal allografts with a high rate of 
technical success (96.5%) with a correlation of stiffness to 
interstitial fibrosis. A significant difference in stiffness val-
ues was seen in patients with low estimated glomerular fil-
tration rate (GFR) compared to those with more normal GFR 
values above 50 ml/min [335]. Case reports of shear wave 
imaging of renal transplants are also beginning to appear and 
pancreatic transplant evaluation using elastography is being 
discussed even though papers on the subject have not yet 
appeared. 

J. Heart 

Unlike most organs, the beating heart is composed of 
rapidly contracting and relaxing muscle whose stiffness is 
constantly changing throughout the cardiac cycle. So a sys-
tem useful for strain or stiffness estimates must acquire data 
at a very high frame rate. Existing cardiac systems can esti-
mate strain rate from acquired Doppler data which depicts 
areas of myocardial infarction well [336], but few systems 
can currently acquire the RF data needed for strain and stiff-
ness estimation. Strain imaging may be helpful for evalua-
tion of localized disorders of myocardial contractility such as 
might occur after myocardial infarction and ischemia. Stud-
ies using ultrasound elasticity estimation have shown prom-
ise [337, 338] although multiple methods are available for 
characterization of myocardial function making widespread 
clinical application less certain. Considerable work on MRE 
is also underway [235, 238]. 

K. Musculoskeletal 

Extensive work on elastography of muscle has been per-
formed using MRE [245, 248]. Stiffness in skeletal muscle 
increases with increased muscle contraction and tension. The 
method may be useful for quantifying muscle status during 
treatment. Tendon [339] and ligament [340] elastography has 
also been accomplished and elastography is even being at-
tempted as an aid to proper massage therapy [341].  

Elastography is also being used as a research tool to 
study hyaline cartilage properties under loading [342]. This 
work may have clinical applicability in the future as a tool 
for non-invasively studying articular cartilage prior to ar-
throscopy and as a tool for studying effects of drug and sup-
plement therapy on cartilage. 

L. Lymphedema 

Preliminary work has been published on the use of a 
variant of elastography, called poroelastography, for the di-
agnosis and grading of lymphedema [343]. Poroelastography 
evaluates the change in Poisson’s ratio (the lateral to axial 
strain ratio) over time to get an estimate of the rate of fluid 
flow from one tissue compartment to another [70-77, 344]. 
Initial work shows that normal tissues exhibit a Poisson’s 
ratio of near 0.5 whereas edematous tissues exhibit a declin-
ing Poisson’s ratio over time as edema fluid leaves the re-
gion being examined. Information regarding the fluid content 
and movement of tissue is useful to determine the stage of 
lymphedema (higher stages have less fluid and more fibro-
sis) as well as an objective way to monitor therapy (a type of 
massage called manual lymphatic drainage). MRI may also 

be able to accomplish this task but would probably be more 
expensive and less available. 

M. Brain  

The material properties of the brain have been explored 
in numerous studies using MRE [229-233]. The skull poses a 
serious obstacle for ultrasound-based elasticity imaging 
methods because of the lack of appropriate acoustic win-
dows. However, one recent study using SSI has reported 
shear elasticity in the brains of rats after craniotomy [345]. 
For MRE studies, wave motion is induced from a vibrating 
bite bar that the subject puts between his/her teeth or a de-
vice that vibrates the head from left to right. The studies us-
ing MRE have demonstrated that the brain viscoelasticity 
can be characterized. A recent study has shown that the vis-
coelastic parameters decrease in patients with multiple scle-
rosis compared to normal subjects [346]. 

N. Other Applications/Summary 

New applications of elasticity imaging are appearing 
weekly in the medical literature. An example of a novel ap-
plication would be the unsuccessful attempt to use EUS 
based elastography to evaluate the anal sphincter [70, 347]. 
Some applications will likely never work but others simply 
require a different approach or further advances in technol-
ogy to be successful. From the explosion of applications over 
the past few years, it is certain that many new applications 
both diagnostic and therapeutic will soon appear as these 
powerful techniques become established tools for visualiza-
tion and diagnosis. 

VIII. CONCLUDING REMARKS  

Viscoelastic characterization of tissue obtained by the 
elasticity imaging methods reported here provide efficient 
indicators identifying diseased tissue versus normal tissue. 
Elasticity imaging methods are emerging as commercial ap-
plications, a true testament to the progress and importance of 
the field. MRE has been reported using both a General Elec-
tric (GE) and Philips 1.5T MRI scanners. Quasi-static elas-
tography has been implemented on many systems including 
those produced by Siemens, Philips, GE, Hitachi, Toshiba, 
Aloka and Ultrasonix. Transient elastography has been im-
plemented in the FibroScan® product manufactured by 
EchoSens (Paris, France) in an effort to quantify liver stiff-
ness for diagnosis of liver fibrosis. Numerous clinical studies 
have been reported in the literature. A search using the ISI 
Web of Knowledge yielded 139 original articles when using 
the search terms “transient elastography and FibroScan®” 
during the time span 2003-2010. The ARFI imaging has 
been implemented as the Virtual Touch imaging and Tissue 
Quantification, respectively, in the Siemens S2000 (Berlin, 
Germany) ultrasound scanner. Lastly, SWEI and SSI have 
been implemented on the Aixplorer® manufactured by Su-
perSonic Imagine (Aix-en-Provence, France). As shear-wave 
based elasticity methods become a part of standard imaging 
systems, the number of clinically relevant studies will ex-
pand greatly. 

As stated above, it is important to recognize that the elas-
tic properties measured with these techniques are part of a 
continuum of the mechanical response of tissue the deforma-
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tion stimulus. As such, the elastic modulus measured at low 
frequency (as in quasi-static elastography) will be predicta-
bly lower than the elastic modulus measured with radiation 
force techniques. Care must be taken in quantitative com-
parisons.  

It should also be noted that there are other approaches for 
estimating the viscoelastic properties of tissue that are not 
included here. For example, there is a growing body of lit-
erature on optical coherence tomography techniques for elas-
ticity imaging. Further, there are recent developments of 
techniques using phase contrast techniques in X-ray imaging 
and X-ray computed tomography for elasticity imaging 
[348]. In time we will find the significance of these devel-
opments. 

In summary, the viscoelastic material properties of soft 
tissue can be characterized using elasticity imaging methods. 
These viscoelastic properties vary between normal and dis-
eased tissue which provides a unique contrast mechanism for 
diagnosis of different pathologies. Numerous elasticity 
measurement and imaging methods have been developed, 
and the following manuscripts review the advantages and 
limitations of those methods. The future for this imaging 
modality holds great potential for many different applica-
tions to assist in detection of disease and improving patient 
outcomes. 
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